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Lessons Learned from the CG-19 Weapons Effects Test on Mitigating the Effects of a
Missile Induced Conflagration

1.0 INTRODUCTION

Since the EXOCET missile attack on the USS Stark (FFG-31) in May of 1987, the U.S.
Navy has been studying the incendiary aspects of anti-ship missiles (ASMs). Efforts to date
include; programs to quantify the thermal conditions produced in the ship by the burning of the
residual missile fuel in the absence of a warhead detonation [1-3], static detonations of warheads
(no motor housings and/or missile fuels) in empty compartments [4], and more recently, a
dynamic shot with a live warhead conducted against a fully fitted and instrumented ship
(ex-USS Dale (CG-19)) [5]. The data collected to date has provided invaluable realistic
hazard/threat information and has expanded the knowledge base with respect to the blast and
thermal conditions produced in the primary damage area (PDA) during the event. The PDA is
defined as the group of compartments/spaces that have been opened-up by the blast and have
free communication of fire gases between them.

The CG-19 Weapons Effects Test (WET) made no attempt to evaluate the
survivability/effectiveness of either active or passive fire protection systems or measures. The
test did, however, demonstrate the potential vulnerability of systems to the blast and also
identified areas in the primary damage area (PDA) where systems could transverse with a
relatively high probability of surviving the blast/event. The test also re-emphasized the need for
systems/measures designed to minimize the threat of the ensuing compartment fire and limit fire
spread outside the PDA.

This paper summarizes the lessons learned from the CG-19 WET with respect to both
system survivability and techniques to mitigate the threat of the ensuing compartment fire.
These lessons are based on the measurements recorded in the ship during the test and a post-test
inspection of the compartments in and around the PDA. During this analysis, a limited number
of specific references to the conditions on aircraft carriers are made but, as a whole, this
information applies to all surface combatants. Techniques that show promise for mitigating the
hazard are identified and recommended for inclusion in future weapons effects testing.

20 OBJECTIVE

The objective of this report is to identify/discuss approaches to increase the survivability
of systems running through the PDA and techniques designed to minimize the threat of fire
spread outside the PDA.

.‘ Manuscript approved August 19, 2003.




3.0 BASELINE CONDITIONS

Recognizing that there are many variables involved in an anti-ship missile attack
(warhead size, trajectory, hit location, residual missile fuel, compartment fuel loading,
ventilation conditions, ship construction, etc.), the following analysis/discussion is presented as
“food for thought” relative to practical lessons learned from both a doctrine and ship design
standpoint. This discussion is based on the analysis of the data collected during the test and the
perceptive gained from a post-hit tour of the damaged area.

3.1  Terminology

Describing the conditions in the ship following a weapon hit requires an understanding of
the shipboard compartment designations developed for these assessments/evaluations. The
compartments are categorized in three ways:

Primary Damage Area (PDA) compartments: These are compartments that have been
identified to experience the quasi-steady overpressures produced by blast. It is assumed
that there is free communication (open doors, open hatches, passageways, blast holes)
between all areas/compartments in the PDA.

Adjacent to Primary Damage Area (APDA) compartments: These are all compartments
that border the PDA and share some common intact boundary (bulkhead/overhead/deck)
with a PDA compartment. There is no free communication between PDA and APDA
compartments (i.e., the intervening boundary is intact and connecting doors and hatches
are closed).

Beyond Adjacent to Primary Damage Area (BAPDA) compartments: These are
compartments that border APDA spaces and can be otherwise described as “twice
removed” from the PDA. These spaces become a concern as a result of potential fire
spread later into the event. It is typically assumed that when the ship is at general
quarters, there are no communicable openings (i.e., vents, ducts, open doors, or open
hatches) between BAPDA and APDA spaces.

3.2  Conditions Produced by the Blast

There is only limited available data on the structural damage produced by a weapon
detonation. Much of this data exists in the form of predictions made using the Ship Vulnerability
Model (SVM) developed by the Naval Surface Warfare Center, Carderock Division (NSWC/CD)
[6]. The SVM has been used during vulnerability assessment reports (VAR) to predict the

~damage for a limited number of ship types and a range of attack weapons. Since structural
damage resulting from a weapon hit is typically classified information, the following discussion
will be general in nature.




There is reasonable degree of consistency between the damage predicted by the SVM and
that observed during actual weapon hits/test. In general, the damage typically produced by the
detonation is a function of the explosive weight of the weapon. Depending on the explosive
weight, the damage can range from one deck to multiple decks in height and vary significantly in
length and width. The size of the hull penetration (vent opening to the weather) can vary in size
from as small as the missile entry hole to as large as a significant portion of the side shell being
opened-up by the blast. The outer perimeter of the PDA is typically bounded by watertight
bulkheads (e.g., fire zone boundaries). Generally speaking, the damage tends to be more severe
near the detonation location and decrease toward the perimeter of the PDA. In some instances,
the most remote areas of the PDA consist of structurally intact compartments that have doors or
hatches that have been blown open by the blast.

Inside the PDA, there will be huge mounds of debris and jagged metal spread throughout
the space. Electrical cables (some potentially energized) will be hanging down from the
overhead. There will be multiple fires in unknown locations at least partially shielded and deep
seated within the debris. Horizontal movement throughout the space will be hampered not only
by debris and electrical cabling but also by large openings in the decks created by the blast. The
ladders and hatches in the space will also be destroyed, preventing vertical movement. These
conditions, along with the heavy smoke and high temperatures created by the fire, present a
serious obstacle for the fire fighting party.

The detonation of the warhead will effectively destroy all systems (i.e., fire main,
electrical power, etc.) located in or running through PDA in the vicinity of the blast. At a
minimum, there will be poor visibility in the PDA due to the lack of lighting and there could
potentially be power outages throughout the ship.

Access to the PDA will also be hindered by the structural damage created by the blast.
The passageways and doors leading into the area may be blocked by ventilation ducts blown
apart by the blast. The bulkheads around the perimeter of the PDA may be warped, preventing
the doors from being opened. As a result, a cutting torch or crowbar may be required to gain
access to the PDA.

3.3 A Description of the Ensuing Compartment Fire

During the CG-19 WET, the detonation of the warhead ignited a fire that burned for at
least six hours and eventually consumed almost all of the combustibles in the PDA. These
combustibles included berthing, clothing, interior finishes (including painted surfaces), and cable
insulation located in the space. The bulkheads and decks in and around the PDA were reduced to
basically bare steel with some remnants of white ash left by the burning paint. The bare
conductors of the cables hung in the overhead of the space with little evidence that plastic
insulation was there before the test. A limited portion of the thermal insulation installed on the
interior surfaces remained intact after the test. A majority of the insulation was assumed to have
been blown off by the blast. In some areas, the facing material (glass) appeared to have been
melted by the fire.




The detonation of the warhead shredded the contents of the space and, in the process,
pushed the materials away form the blast location. As a result, there were significant piles of
debris against the perimeter boundaries of the blast damage area. Based on this observation, it
can be assumed that a substantial portion of the fire occurred near the perimeter of the space.

Observations conducted around the perimeter of the PDA suggest that the fire would
have spread both vertically upward and horizontally (forward) to APDA compartments if the
adjacent spaces were loaded with combustible materials. The fire could have potentially spread
vertically through multiple decks had there been a super structure above the PDA. The fire did
not spread in the aft direction due to insufficient fuel loading in the aft section of the PDA. (The
fuel loading in this area had been intentionally removed for test purposes (setting fire
boundaries)).

4.0 TECHNICAL DISCUSSION
4.1 Compartment Fire Development

4.1.1 Fire Growth Rate

On impact, the detonation of the warhead consumed all of the oxygen in the space and
produced a short duration high intensity (high temperature) thermal pulse. On completion of
these blast-related effects, the space rapidly cooled and the oxygen concentration in the space
gradually increased as air began to flow back into the compartment. As oxygen was replenished,
the space became fully involved (a fully developed compartment fire) and eventually consumed
the entire PDA. Within 15 to 20 minutes after the hit, the fire reached maximum intensity
producing compartment temperatures in excess of 500 °C (932 °F). These trends can be
observed in measurements shown in Fig. 1.

During a modeling exercise, the fire growth curve observed during the CG-19 WET was
estimated based on the oxygen recovery rate in the PDA [7]. The resulting fire growth curve is
considered to be a medium growth rate (a = 0.011 kW/sec?) according to standard t — squared
fire growth nomenclature. '

4.1.2 Maximum Cbmpartment Temperature

In most scenarios, the size of the opening created by the blast (opening to the weather)
governs the maximum heat release rate of the ensuing fire. In a previous study, the Naval
Research Laboratory (NRL) bounded the likelihood (and time) for compartments subjected to
weapons induced damage to reach flashover [8]. The analysis was conducted for steel
compartments with natural ventilation (an opening to the weather). As part of this study, twenty-
seven compartment/vent configurations were analyzed using the multi-zone computer model, -
“Consolidated Model of Fire Growth and Smoke Transport,” CFAST [9]. The results show that
the likelihood reaching flashover is a function of the ventilation factor to compartment surface

area ratio. The ventilation factor, AH (where A4 is the area of the vent (m”) and H is the height
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of the vent (m)), defines the maximum heat release rate in the compartment and the energy losses
out of the vent openings. The energy losses through the boundaries are a function of the

compartment surface area (A4, ) defined as the area of the walls and the ceiling and excludes the
floor and vent areas. The results suggest that only compartments with ventilation factor to
“surface area ratios AV H / A greater than 0.015 m'”? are likely to produce and sustain flashover

conditions. For extremely large vent openings, the fire becomes fuel limited (with the heat
release rate governed by the fuel surface area) and the severity of the fire is decreased. These
trends are shown in Fig. 2.

The temperatures measured during the CG-19 WET show good agreement with those
predicted in Fig. 2. The maximum compartment temperatures (measured during the ensuing
compartment fire) approached 650 °C with a ventilation factor to surface area ratio of 0.04 m'”?

[7].

4.1.3 Relevance of the Term “Flashover”

The test results suggest that the use of the term “flashover” may not be appropriate or
may be misleading for a missile hit scenario. Although flashover is defined as an upper layer
temperature between 500-600 °C (932-1112 °F), the term is also associated with a rapid fire
growth stage as radiant heat from the upper layer ignites all exposed combustibles in the
compartment (filling the compartment with fire). At two times during this test, the temperatures
in the space met the definition of flashover, but the heat release of the fire did not significantly
increase. This was attributed to either a lack of oxygen or to a lack of fuel surface area. In any
case, in order for the fire to rapidly increase to the point where the compartment is filled with
flame, both an adequate air supply and ample fuel loading/surface area are needed. In a
significant percentage of missile hit scenarios, these conditions may not be met.

Another issue relative to flashover concerns the method by which rapid fire growth can
occur. In the classical case of flashover, ignition of exposed fuel surfaces occurs due to the
incident radiant heat flux caused by the hot gas layer. As shown during the CG-19 WET, the
heat released by a warhead detonation causes an instantaneous temperature spike throughout the
blast area well in excess of 500 °C (932 °F). Although the gas temperatures in the PDA are well
above the auto-ignition temperature of normal shipboard combustibles, there is a period during
which there is insufficient oxygen to allow these materials to burn. If the oxygen recovers while
fuel surfaces are above their auto-ignition temperatures, rapid combustion can occur. Auto-
ignition temperatures for common materials are on the order of 200-300 °C (392-572 °F) [10]
and are much lower than those temperatures associated with flashover. Regardless of whether
rapid ignition occurs due to heating via radiation or immersion in hot gases, the effect could be
the same.

The significance from a fire fighting standpoint is twofold: (1) given rapid response, fire -
fighters may be able to extinguish the fire during the lull period while oxygen-deficient gasses
are replaced by fresh air, though (2) fire fighters may have to confront a sudden flare-up of
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exposed fuel surfaces as soon as the oxygen level increases. Fire fighting implications are
discussed in more detail in paragraph 4.3.

4.2  Design Implications

4.2.1 Bulkheads and Doors

Since the PDA will eventually become fully involved in a majority of weapon hit
scenarios, structural improvements can play a major role in reducing the overall fire size.
Hardening the hull could potentially reduce the size of the vent opening and the heat release rate
of the fire. Bulkheads and doors (especially passageway doors) that remain intact are essential
for reducing the size of the PDA and at the same time may minimize secondary fire damage.

Long passageways without doors or other closures which extend through multiple
subdivisions of a ship can result in unrestricted fire and smoke spread if they are part of the
PDA. The Navy should consider installing doors in long open passageways to limit the size of
the PDA and reduce fire and smoke spread throughout the ship.

The heat transfer/insulating characteristics of major watertight subdivisions should also
be revisited. Bulkheads and decks (or bulkhead and deck treatments) that could contain the heat
in the PDA and prevent fire spread could significantly reduce the outcome of the event. At a
minimum, they would reduce the manning required to combat this fire by negating or reducing
the need to set boundaries.

Many ships are currently being fitted with fire insulation on fire zone boundaries.
Aircraft carriers are currently not equipped with fire insulation on any boundaries. The Navy
should consider fitting aircraft carriers with fire 1nsulat10n on fire zone boundaries and on the
boundaries of vital spaces.

Current Navy fire insulation is designed to be installed on the exposure side of the
boundary. As a result, many boundaries are insulated on both sides. The current insulation has
limited strength characteristics and may be blown off by the blast. As a result, a new innovative
approach may be required to address this damage issue and could potentially reduce the weight
associated with having to insulate both sides of the boundary. One potential approach would be
to sandwich the insulation between two sheets of metal.

When evaluating new insulating techniques and materials, the performance requirements
(backside temperature and duration of protection) may need to be reconsidered and selected
based on the application. For example, the requirements for magazines and/or vital spaces may
be different than the requirements for other applications.



To summarize the previous discussion, the following items should be investigated:

. Consider the installation of doors in long open passageways;

o Measure ability of fire insulation to remain in place after a weapon detonation;
Evaluate the impact of various bulkhead and deck coverings to prevent fire spread
outside the PDA; and,

. Consider new bulkhead designs (e.g., sandwich insulation, composites, etc.).

4.2.2 Minimization of Fuel Loading

Previous fuel loading studies [11-13] have shown that almost every shipboard
compartment contains adequate fuel to support a fully developed compartment fire (with a
limited few exceptions). Typical fuel loadings for actual shipboard compartments range from
0.2-0.4 kg/m* (5-10 Ibs/fi®) with a significant portion of the fuel comprised of cables running
through the overhead of the space (Appendix A). Effort should be made to minimize the fuel
loading in each compartment and/or develop techniques that prevent burnable materials from
coming in contact with air (oxygen).

4.2.2.1 Ordinary Combustibles

The following containment techniques should be considered to reduce the effective fuel
loading in the space:

e  Stowage of combustibles (clothing, books, paper and office supplies) in self
closing metal lockers and cabinets;

Self closing metal trash receptacles;

Roll type desks (lid closed when not in use or during potential hostilities);
Enclosed closet stowage for all linens and towels; and,

Utilization of “Murphy” beds (when not in use folds up into metal enclosed niche
in the bulkhead).

4.2.2.2 Cabling

The CG-19 WET adds credence to previous studies that have shown that electric
cableways provide a majority of the fuel loading in a typical shipboard compartment [11-13].
These studies suggest that cabling can be on the order of 70% of the fuel loading for a given
space. Since cables are usually installed high in the overhead, they are more likely to become
involved in a fire due to exposure from the hot upper layer. Cabling that is difficult to ignite and
has a lower heat release rate would reduce the effective fuel loading and should be investigated.
A ship design policy that requires all cables to be run in enclosed steel trunks (potentially blast
hardened), preferably located at/near deck level on the inside of the hull would also significantly
reduce the overall fuel loading/fire severity and would increase the survivability of the
cabling/systems.




This would be especially true for the upper decks of an aircraft carrier (03 Level, 2" and
3" Decks). Due to regulations preventing cabling from running through the magazines on the
lower decks and through the aircraft hangars on the Main deck, the cable loadings on the 03
Level, 2™ and 3™ Decks is significantly higher than analogous compartments on other

combatants.

4.2.2.3 Fuel Piping

Although ruptured fuel piping was not an issue during the CG-19 WET, techniques to
blast harden flammable liquid piping should be considered/developed. These techniques should
include but are not limited to: double wall piping with survivable fittings, excess flow/automatic
shut-off valves, remote control fuel shut-off, smart valves, etc.

4.2.3 Fixed Fire Fighting Systems

The CG-19 WET also provided some information relative to the design and utility of
water delivery systems (e.g. overhead sprinkler systems) for suppressing combat-induced fires.

The design of such systems (and other systems running through the ship) should consider
the likely blast pattern from and anti-ship missile as observed during this test and during the
attack on USS Stark in May of 1987 [14] where only one side of the ships hull was damaged by
blast. This suggests that water distribution piping running along the interior of the hull (on both
sides of the ship for redundancy) may survive the blast.

This test might also suggest that an overhead water delivery system (suppression system)
will have limited utility in a combat induced fire. To achieve cooling and/or suppression in the
-PDA, more survivable system designs need to be developed and tested.

. The recently completed Damage Control-Automation for Reduced Manning (DC-ARM)
program helped to identify and develop the systems, equipment and techniques that will be
required to significantly reduce the manning requirements for damage control (DC) and improve
DC performance on Navy ships [15-17]. The DC-ARM technologles demonstrated included a
high-pressure (HP) water mist fire suppression system.

In the design of the DC-ARM water mist system, the concept of improved survivability
was introduced with an architecture that included HP sidewall water mist nozzles [18]. The
concept was to provide a design where some nozzles survive the blast in the PDA. Since the
damage in the PDA tends to be less around the perimeter, the sidewall nozzle concept has
significant merit. Water discharged from these nozzles would then cool the PDA and prevent
fire spread to adjacent compartments. This would reduce the manpower required to perform an
indirect attack on the PDA. This survivable sidewall concept could be adapted to other systems
as well (e.g. conventional sprinkling).

The ability of a sidewall water mist system to cool the PDA has been bounded
analytically and validated during full scale testing [19, 20]. The results suggest that 40-80 Lpm

10




(10-20 gpm) of water mist could potentially cool the PDA to less than 100 °C and prevent fire
spread to adjacent spaces for the likely range of battle damage conditions included in this
analysis.

For combat scenarios, fixed boundary cooling systems at major subdivisions may have
considerable merit. Previous studies have identified the relatively low water delivery rate
necessary to prevent fire spread through intact boundaries [21]. A perforated pipe (or other
water delivery systems/nozzles) on each side of a major boundary should be considered,
especially in a minimally manned ship where conventional fire party boundary men may not be
available.

4.3  Fire Fighting Implications

4.3.1 Increased Situational Awareness

The DC-ARM program [15-17] developed and demonstrated technologies that enable
significant reductions in DC manning by automating selected DC functions. The purpose of the
program was to evaluate the capabilities of the advanced systems and technologies developed to
date, demonstrate improved situation awareness by DC Central personnel, and evaluate the
modified DC Manning organization.

While not associated with the CG-19 WET, the DC-ARM program made significant steps
in reducing the DC manning required for a wartime casualty (missile induced conflagrations).
For shipboard implementation, a first step to applying this knowledge to an actual ship may be to
focus on the situation awareness aspect of the problem. A video monitoring system or a simple
Commercial Off-the-Shelf (COTS) heat and/or smoke detector system installed throughout the
ship could be used to define the PDA and to track the progression of the fire through the ship.
Since there appears to be a trend towards installing video monitoring systems on new ships for
security purposes (watch standing), the same system could also be used to increase the
situational awareness during a missile-induced conflagration.

4.3.2 Fire Fighting Procedures

Prior to a discussion on fire fighting doctrine and procedures, the adverse conditions
produced by the blast need to be restated. It is these conditions that will dictate the success of
the fire fighting efforts.

In a majority of missile hit scenarios, the fire main will in all probability need to be
realigned prior to conducting manual fire fighting. Access leading into the PDA will also be
hindered by the structural damage created by the blast. As a result, a cutting torch or crowbar
may be required to gain access to the PDA. Once inside the PDA, there will be huge mounds of
debris and jagged metal spread throughout the space. These conditions, combined with the
heavy smoke and high temperatures created by the fire, will present a serious obstacle for the fire
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fighting party. As a result, the first decision will be to determine whether to access the space and
begin a direct attack or to prevent fire spread outside the PDA by setting boundaries

It should be emphasized that the following discussion, which minimizes the importance
of entry and a direct attack on the PDA, presumes the immediate demise of all personnel within
the space negating the need for search and rescue within the PDA. It is assumed that immediate
lethality will result in the blast area from the fireball, blast wave and overpressure, primary and
secondary fragmentation, immediate consumption of all oxygen, elevated temperatures, and
copious quantities of toxic combustion products. The issue of potential human survival and the
role of search and rescue efforts can have significant impact on tactics to be followed. To
validate this assumption on lethality, it is suggested that an in-depth analysis be conducted
focusing on human survivability in the blast environment.

4.3.2.1 Attack Options

The “Operational Objectives for Fire Fighting” [22] were developed to establish the fire
fighting capabilities required for a ship to survive a hit from a modern anti-ship missile. That
report, which was based primarily on testing conducted with solid propellant (such as that used
in EXOCET), concluded that the compartment of origin (PDA) would become fully involved
within 3 minutes of the detonation as shown in Fig. 3. The experimental and incident data used
to develop those conclusions have various interpretations raising questions about the likelihood
and timing of this event. The results of the CG-19 WET add additional data concerning the time
required to reach the fully developed fire stage.

The time-temperature curve recorded during the CG-19 WET is similar in shape to the
one presented in the “Operational Objective for Fire Fighting.” The difference between the two
curves lies in the time scale of the event. A comparison between the two curves for the first
twenty minutes after the hit is shown in Fig. 4. As indicated in this figure, the duration of the
initial thermal pulse created by the warhead detonation and the time required to reach full
involvement may have been previously underestimated by a factor of four to five. The
conditions produced by the initial thermal pulse lasted in some degree for over 5 minutes. The
compartment fire did not reach full involvement until 10 minutes later (15 minutes after the hit).
This data perhaps suggest that in some instances there is more time than previously thought to
initiate fire fighting actions in an attempt to slow fire growth in the PDA.

The temperature curve from the CG-19 WET suggests a possible “window of opportunity”
lasting several minutes where it might be possible to automatically (through the use of a
survivable system) or manually attack the fire directly to prevent or slow the transition into the
fully developed compartment fire. Previously testing on the ex- USS Shadwell as part of the
Attack Team Workshop [23] showed that fully protected fire parties can function in air
temperatures as high as 250-300 °C (482-542 °F) for several minutes. On the Shadwell, fire
fighters with breathing apparatus, full ensemble, flash hoods and gloves (i.e., no exposed skin
area) were able to enter a compartment with the air temperature at head height about 300 °C and
extinguish multiple fires involving wood cribs, particle board, and cardboard filled boxes using
an “offensive fog” attack method. The Shadwell results would clearly suggest that, between five
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Fig. 4. — Measured time temperature curve for the CG-19 WET
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to ten minutes after the hit, the temperatures might be low enough to permit such an attack
(assuming the fire party can quickly gain access to the PDA).

Another approach would be to conduct an indirect attack on the PDA by cutting holes in
the deck above and inserting a hose line nozzle set for a wide angle fog pattern. This type of
indirect attack was shown to be very effective during the DC-ARM program [16, 17]. It is
recommended that the holes be cut 6-9 m (20-30 ft) forward and aft of the estimated point of
detonation.  Other techniques and hardware such as cellar nozzles or hi-expansion foam
generators should also be considered/investigated.

4.3.2.2 Setting Boundaries

Even if the temperatures are not excessively high, attempts to enter the PDA for direct
fire fighting will be arduous, time consuming, and most likely futile in terms of salvaging the
contents of the space. The data indicates that for a considerable period of time (at least 15
minutes) the fire should be confined to the PDA. Within this area, human survival is unlikely
and blast damage is extensive.

For practical purposes, it may be best from a fire fighting standpoint to assume that the
contents in the PDA have been completely destroyed by the blast. As a result, the threat from the
fire is the likelihood of spread to adjacent spaces. This suggests that the primary goal of fire
fighting efforts should be to cool boundaries and prevent spread (set boundaries around the
PDA). '

Another factor supporting the need to focus on boundary cooling is illustrated in Fig. 5.
The blast tends to shred the contents of the space and pile a significant portion of the contents
around the perimeter of the PDA. This piling of combustible debris around the perimeter could
cause direct flame impingement on the bulkheads, facilitating rapid heat transfer (and fire
spread). Previous studies have shown that heat transmission through an intact bulkhead can
cause ignition of combustibles on the non-fire side in less than 10 minutes [24].

4.3.2.3 Smoke Curtains

A less conventional approach to combating a missile induced fire is to reduce the oxygen
available for combustion. As discussed in the CG-19 Final Report [5], a typical “wood stove”
airflow pattern was created on the CG-19 by the missile penetration and warhead detonation.
Throughout the duration of the fire, fresh air entered through the hole created by the missile
while smoke and combustion products exited the overhead “chimney” through hatches on the
main deck that were blown open by the blast. In some respects, the high vent path is an anomaly
relative to typical blast damage. If these hatches had not been located above the blast area, there
may not have been a topside hole to the weather. This would have significantly reduced the
oxygen available for combustion as well as the size of the ensuing fire. A technique such as
covering the missile entry hole (or any other opening between the PDA and the weather that
provides air to the fire) with a smoke curtain could considerably reduce the size of the fire. In
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Fig. 5 — Relocation of combustibles caused by the blast
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this particular case, the entry hole was small and could have been easily covered. Quantification
of the merits of such a procedure should be considered as a future R&D study.

4.3.2.4 Suggested Fire Fighting Doctrine

The essential lessons learned from a procedural standpoint are as follows:

It is important to readily determine the perimeter of the PDA. This will aid in
deciding whether to enter the PDA or to set boundaries in adjacent spaces.

Boundary setting, including boundary cooling as necessary, should be
established around the perimeter of the PDA with special attention given to vital
spaces.

If accessible, the missile entry hole should be covered with smoke curtain (or
other means) to restrict airflow into the compartment.

Lateral entry into the PDA for purposes of direct or indirect fire fighting may be
attempted subject to the following constraints:

—  Access will probably be blocked by blast damage. Time and effort
should not be wasted on forcible entry at the expense of setting
boundaries;

—  Entry will require full protective clothing and breathing apparatus;
—  To be successful, entry must be made within the first ten minutes; and,

—  Fire fighters should be alert to the possibility of a very rapid
temperature rise as the oxygen level in 'the compartment begins to
recover.

If direct entry into the PDA is not possible, an indirect attack should be
conducted by discharging water into holes cut in the overhead of the blast
damage area. Holes should be cut approximately 6-9 m (20-30 ft) forward and
aft of the estimated point of detonation.

4.3.2.5 Additional Considerations

There is also the question of whether the impact location (general area in the ship) would
alter the fire fighting tactics. It can be rationalized that there are at least three different scenarios
associated with the impact location. These scenarios/locations include: low in the ships hull,
high in the ship’s hull, and in the super structure. In all three scenarios, the blast damage (and
openings to the weather), the ability to access the compartment, the approach/need for an indirect
attack, and the potential need for dewatering may be significantly different. It is recommended
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that a blast damage model be used to bound the range of potential conditions for each of these
scenarios. The predicted blast damage used in conjunction with current fire modeling techniques
would bound the likely thermal conditions produced by the fire and aid in the development of
tactics and doctrine to combat the various scenarios. The effect of the types of compartments in
the PDA (i.c., magazines, flammable liquid storerooms, vital spaces, etc.) as well as the ship
status prior to the blast (i.e., set zebra) should also be included in the sensitivity analysis.

5.0 SUMMARY

The following techniques are recommended for reducing the severity of a missile induced
conflagration and should be considered for inclusion in future weapons effects testing.

I. Evaluate various “fuel load minimization concepts” (reductions in total fuel loading
and /or techniques that prevent burnable material from coming in contact with air)

including:

Stowage of combustibles (clothing, books, paper and office supplies) in
self closing metal lockers and cabinets;

Self closing metal trash receptacles;

Roll type desks (lid closed when not in use or during potential hostilities);
Enclosed closet stowage for all linens and towels;

Utilization of “Murphy” beds (when not in use folds up into metal
enclosed niche in the bulkhead);

Investigate cabling with reduced/lower burning characteristics;

Installation of electrical cable in conduit, protected chases or box beam
girders; and,

Blast hardened flammable liquid piping (double wall piping with
survivable fittings, excess flow automatic shut-off valves, remote control
fuel shut-off, smart valves, etc.).

II. Evaluate techniques for reducing the likelihood of fire spread through intact
boundaries including:

Measure ability of fire insulation to remain in place after a weapon
detonation;

Evaluate the impact of various bulkhead and deck coverings to prevent
fire spread beyond the blast damage area; and,

Evaluate other insulation techniques (e.g. sandwiched insulation between
two sheets of metal). '

II. Evaluate possible installation techniques for enhancing the survivability of systems
(sprinkler, water delivery, and vital systems) including:

Piping and cabling at the hull rather than distributed throughout the
overhead;

Piping run in steel box beam girders (armored pipe runs);

Cabling run in steel box beam girders (armored cable runs);

18



6.0

¢ Recessed sprinklers heads; and,
e Sidewall heads.

IV.  Develop/evaluate systems to cool the PDA and cool the PDA boundaries.

V. Develop a network of sensors designed to increase the overall situational
awareness.

VI.  Refine the Doctrine for fighting missile induced fires including:
e Develop/evaluate techniques for accessing the space after the hit;
e Develop/evaluate techniques for conducting an indirect attack;
e Develop/evaluate techniques for setting boundaries around the PDA; and,
e Quantify the utility of air-starving the fire by covering vent holes to the
weather using smoke curtains as a possible fire fighting tactic.
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APPENDIX A

FUEL LOADINGS OF TYPICAL SHIPBOARD COMPARTMENTS




FUEL LOAD ESTIMATES FOR TYPICAL SHIPBOARD COMPARTMENTS

As an aid in determining fuel load quantities for the ex-SPRUANCE WET tests, three
references that estimate typical fuel loads were reviewed. Reference [A1] was based on visits to
two CG-47 Class ships as well as a detailed review of DDG-51 design drawings. Reference [A2]
was prepared to estimate fuel loads in spaces on the USS Stark. Reference [A3] was funded by
NRL as a means of quantifying ship fire hazards based on compartment material contents. The
tables below provide summaries from each reference of estimated fuel loads for selected spaces.

Table 1. Fuel Loads from Reference [Al]

Space Designation Normal Contents | Typical Cable Fuel | Typical Total Fuel
(Ibs/ft®) (1) Load (Ibs/f®) (2) | Load (Ibs/ft) (3)
Crew Living 5-7.5 2-2.5 7-10
WR, WC & Shr 1-2 1-2 2-4
IC & Gyro 2.5-5 5-7.5 o 7.5-12.5
Ships Store Room 5-7.5 2-2.5 7-10
A/C Mach Pump Rm | 1-2 2-2.5 3-4.5
Fan Room 1-2 5-7.5 6-9.5
Tool Issue Room 1-2 1-2 2-4
Linen Locker 5-7.5 1-2 6-9.5
Laundry 5-7.5 1-2 ' 6-9.5
Crew Rec/Trng 1-2 2.5-5 3.5-7
General Workshop 2.5-5 1-2 3.5-7
Passageway . 0 2-10 (4) 2-10

Notes: (1) Fuel load of contents (not including cables) based on space designation. All
fuel loads based on pounds of “wood equivalent” (8000 BTU/Ib)
(2) Typical fuel load presented by cables passing thru or serving space
(3) Typical total fuel load (contents plus cables)
(4) Overhead cable fuel load in passageways varied widely. Highest fuel load
occurred when longitudinal passageways were used for main fore-aft cable
runs. '

Table 2. Fuel Loads from Reference [A2]

Space Designation Normal Contents | Typical Cable Fuel | Typical Total Fuel
(Ibs/ft%) Load (Ibs/ft%) Load (Ibs/ft%)
Crew Living 6.4 3.2 9.6
1 WR, WC & Shrs 3 14 . 1.7
Ships Store . 6.3 2.1 8.4
Electronics (CIC) 1.0 14.1 15.1
Passageway 0 6.3 6.3
A-2




Table 3. Fuel Load for Crew Berthing from Reference [A3]

(Calculations based on 500 ft>, 18 man bunk room)

Item Fuel Load
Per Person (40 lbs bedding, 60 Ibs personal | 1800 lbs
property) 18 persons x 100 lbs/person

Cable Passing Through (50 linear ft x 2 ft’ per | 2000 Ibs
linear ft x 20 lbs/ft’)

Floor Tiles (500 fi” x 1 Ib/ft%) 500 Ibs
Paint on Bulkheads 70 lbs
Trash in Cans 30 lbs
Total 4400 lbs
Fuel Load per ft® 4400 Ibs/500 fi* = 8.8 Ibs/f*
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